Modeling human cytochrome P450 2D6 metabolism and drug-drug interaction by a novel panel of knockout and humanized mouse lines.

نویسندگان

  • Nico Scheer
  • Yury Kapelyukh
  • Jillian McEwan
  • Vincent Beuger
  • Lesley A Stanley
  • Anja Rode
  • C Roland Wolf
چکیده

The highly polymorphic human cytochrome P450 2D6 enzyme is involved in the metabolism of up to 25% of all marketed drugs and accounts for significant individual differences in response to CYP2D6 substrates. Because of the differences in the multiplicity and substrate specificity of CYP2D family members among species, it is difficult to predict pathways of human CYP2D6-dependent drug metabolism on the basis of animal studies. To create animal models that reflect the human situation more closely and that allow an in vivo assessment of the consequences of differential CYP2D6 drug metabolism, we have developed a novel straightforward approach to delete the entire murine Cyp2d gene cluster and replace it with allelic variants of human CYP2D6. By using this approach, we have generated mouse lines expressing the two frequent human protein isoforms CYP2D6.1 and CYP2D6.2 and an as yet undescribed variant of this enzyme, as well as a Cyp2d cluster knockout mouse. We demonstrate that the various transgenic mouse lines cover a wide spectrum of different human CYP2D6 metabolizer phenotypes. The novel humanization strategy described here provides a robust approach for the expression of different CYP2D6 allelic variants in transgenic mice and thus can help to evaluate potential CYP2D6-dependent interindividual differences in drug response in the context of personalized medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines.

Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C clust...

متن کامل

P-192: Association of Cytochrome P450 2D6 (CYP2D6) Gene Polymorphism with Clomiphene Citrate Treatment in Iranian Infertile Women with Polycystic Ovary Syndrome

Background: Clomiphene Citrate (CC) is the most frequently administered drug for the treatment of female infertility [e.g. polycystic ovary syndrome (PCOS)]; which aims at restoring ovulation. Clomiphene is metabolized by CYP2D6, an important enzyme responsible for the metabolism of approximately 25% of clinically used drugs. CYP2D6 is very polymorphic and thought to result in inter- individual...

متن کامل

Human CYP2D6 and mouse CYP2Ds: organ distribution in a humanized mouse model.

Polymorphic cytochrome P450 (P450) 2D6 (CYP2D6) metabolizes several classes of therapeutic drugs, endogenous neurochemicals, and toxins. A CYP2D6-humanized transgenic mouse line was previously developed to model CYP2D6-poor and -extensive metabolizer phenotypes. Human CYP2D6 was detected in the liver, kidney, and intestine of these animals. In this study, we investigated further the cellular ex...

متن کامل

Expression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells

Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...

متن کامل

Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line.

Cytochrome P450 (P450) 3A4 is the predominant P450 enzyme expressed in human liver and intestine, and it is involved in the metabolism of approximately 50% of clinically used drugs. Because of the differences in the multiplicity of CYP3A genes and the poor correlation of substrate specificity of CYP3A proteins between species, the extrapolation of CYP3A-mediated metabolism of a drug from animal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 81 1  شماره 

صفحات  -

تاریخ انتشار 2012